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The ongoing activity of the brain at rest, i.e., under no stimulation and in absence of any task, is astonishingly highly structured into
spatiotemporal patterns. These spatiotemporal patterns, called resting state networks, display low-frequency characteristics (<0.1 Hz)
observed typically in the BOLD-fMRI signal of human subjects. We aim here to understand the origins of resting state activity through
modeling via a global spiking attractor network of the brain. This approach offers a realistic mechanistic model at the level of each single
brain area based on spiking neurons and realistic AMPA, NMDA, and GABA synapses. Integrating the biologically realistic diffusion
tensor imaging/diffusion spectrum imaging-based neuroanatomical connectivity into the brain model, the resultant emerging resting
state functional connectivity of the brain network fits quantitatively best the experimentally observed functional connectivity in humans
when the brain network operates at the edge of instability. Under these conditions, the slow fluctuating (<0.1 Hz) resting state networks
emerge as structured noise fluctuations around a stable low firing activity equilibrium state in the presence of latent “ghost” multistable
attractors. The multistable attractor landscape defines a functionally meaningful dynamic repertoire of the brain network that is inher-

ently present in the neuroanatomical connectivity.

Introduction

In the absence of external stimulation, any physical system is in its
equilibrium state, which is often characterized by the lowest level
of activity of that system. Eventually, if noise is inherent in the
system, the fluctuations drive the system out of its equilibrium
state resulting in low-amplitude random activity. The brain is a
particular case of a noisy physical system composed of neurons
interconnected through synapses in brain areas, whose activity is
mainly characterized by the level of spiking activity in those areas.
Nevertheless, the equilibrium state of the brain, i.e., the sponta-
neous, not stimuli- or task-evoked brain activity during rest, does
notreflect just a trivial random activity as one may naively expect.
During the last decade, numerous experimental investigations
have shown that spontaneous brain activity during rest is highly
structured into characteristic spatiotemporal patterns, the so-
called resting-state networks (RSNs) (Biswal et al., 1995; Greicius
et al., 2003; Fox et al., 2005, 2007; Fransson, 2005; Raichle and
Mintun, 2006; Rogers et al., 2007; Vincent et al., 2007).
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RSN reflect the anatomical connectivity between brain areas
in a network but cannot be understood in those terms alone
(Bullmore and Sporns, 2009). The missing link for understand-
ing the formation and dissolution of RSN is the dynamics (Deco
et al., 2011). Theoretical models allowed us to study the rela-
tion between anatomical structure and RSN. In particular,
Ghosh et al. (2008) and Deco et al. (2009) were able to explain
the formation and dissolution of slowly fluctuating RSNs by
considering a simple local oscillatory dynamics at each node.
Other RSN modeling efforts included more detailed physio-
logical models for the dynamics of brain areas, but then again
imposed specific constraints upon the network dynamics,
mostly for reasons of computational efficiency [such as epi-
leptiform node dynamics of a given brain area (Honey et al.,
2007) or truncation of time delays via signal transmission and
rescaling of the connectivity (Izhikevich and Edelman, 2008)].
A more detailed and complete physiological model for the
dynamics of individual brain areas will allow making the link
between neurophysiological parameters and RSN dynamics.
To this aim, we formulate a detailed global attractor model of
the brain network, which offers a realistic mechanistic model
at the level of each single brain area based on spiking neurons
and realistic AMPA, NMDA, and GABA synapses.

With this in mind, we here demonstrate the emergence of the
slowly fluctuating (<0.1 Hz) RSNs as noise-driven transient fluc-
tuations around the stable equilibrium state corresponding to
low firing activity in all neurons in all areas. The best match
between simulated and experimental resting state functional con-
nectivity as measured in humans with fMRI occurs right below
the threshold separating the trivial low firing activity equilibrium
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Empirical Functional Connectivity Matrix
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a, Neuroanatomical Connectivity matrix obtained by DSI and tractography after averaging across 5 human subjects. b, Empirical functional connectivity matrix of the BOLD activity

averaged across the same 5 subjects during 20 min under resting state conditions (data from Hagmann et al., 2008).

state from the multistable landscape of attractors with high firing
activity in certain brain areas. The latter global attractor structure
represents the brain’s dynamic repertoire and shows the highest
signal complexity as evidenced by entropy.

Materials and Methods

Empirical neuroanatomical and functional connectivity matrix. Neuroana-
tomical connections in 5 healthy right-handed male human subjects
were extracted by using diffusion spectrum imaging (DSI) white matter
tractography (Hagmann et al., 2008; Honey et al., 2009). This neuroana-
tomical matrix expresses the density with which two different brain areas
are connected through white matter fiber tracts, where we used a seg-
mented gray matter parcellation into 66 areas. The neuroanatomical
matrix was finally averaged across the 5 human subjects. Figure 1a shows
graphically the structure of the connectivity matrix by encoding the
strengths of the different connections in a color map. The connectivity
matrix is symmetric at the voxel level, due to the fact that tractography
cannot distinguish the directionality of the fibers. The internal local con-
nectivity between neurons within a given brain area is considered explic-
itly in the spiking attractor model adopted (described below), so that at
the global level described by the neuroanatomical connectivity the self-
connection of a region to itself is set to 0 in the connectivity matrix. We
order the different brain areas in the neuroanatomical connectivity ma-
trix according to modules that have substantially denser connectivity
within the module than with the complementary part of the network.
Furthermore, homotopic regions in the two cerebral hemispheres were
arranged symmetrically with respect to the center of the matrix. This
reordering reveals graphically the small-world structure of brain net-
works through the presentation of clusters of varying size (Watts et al.,
1998). In particular, the reordering of the connectivity matrix (Fig. 1a)
shows the presence of clusters of nodes that are more connected inside
than outside the cluster to which they belong, confirming previous ob-
servations (Bullmore and Sporns, 2009).

Resting state activity was also obtained for the same 5 subjects by
measuring the corresponding fMRI BOLD signal during 20 min in
absence of stimulation or task. After regressing out the global signal
(Fox et al., 2005) and averaging across subjects an empirical func-

tional connectivity matrix was obtained (for details, see Honey et al.,
2009). This empirical functional connectivity matrix reflects the cor-
relation of the BOLD activity between different brain areas at rest.
Figure 10 plots the resulting empirical functional connectivity matrix
in a color map.

Global cortical model. The global architecture of the model is shown
in Figure 2. Each brain area is modeled by a local spiking attractor
network consisting of mutually interconnected populations of excit-
atory pyramidal neurons and GABAergic inhibitory neurons. This
population model serves as the representation of a node in the large-
scale network, in which the structural connectivity matrix is com-
posed of neuroanatomical connections between distinct brain areas
in the human. The structural connectivity is obtained from DSI,
which forces the connectivity matrix to be symmetric. This constraint
will be only limiting, if the symmetry breaking of the real connectivity
islarge, since then it may introduce additional oscillatory behaviors of
the network (Knocketal., 2009; Jirsa et al., 2010). At the current stage,
there is no solution to overcome this constraint, though one could
imagine that merging directed structural information from primate
data (such as the Cocomac database; Kotter, 2004) with tractographic
data from the human might bear promise.

Here, the interconnection between different brain areas is specified by
the neuroanatomical human matrix described above. We consider here
that the white matter tract connections between two distinct brain areas
describe synaptic connections between pyramidal neurons in those areas.
We weight those inter-areal connections by the strength specified in the
neuroanatomical matrix (numbers of fibers connecting those regions)
and by a global factor denoted by W, which we will vary systematically to
study the dynamics and fix points of the global cortical system (attrac-
tors) as a function of it.

Local brain area model: spiking attractor network. For modeling a local
brain area (i.e., a node in the global network) we have taken a two-tiered
approach, that is modeling the population of single neurons, as well as a
mean-field approximation (after Brunel and Wang, 2001).

For the microscopic level of description, we use a biophysically realis-
tic attractor network model consisting of integrate-and-fire spiking neu-
rons with excitatory (AMPA and NMDA) and inhibitory (GABA-A)
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synaptic receptor types (Brunel and Wang,
2001). This type of attractor network of spiking
neurons is a dynamical system that in general
has the tendency to settle in stationary states,
fix points called “attractors,” typically charac-
terized by a stable pattern of firing activity. Ex-
ternal or even intrinsic noise that appears in the
form of finite size effects could provoke desta-
bilization of an attractor inducing therefore
transitions between different stable attractors.
The dynamics of the network can be described
by coupling the dynamical equations describ-
ing each neuron and the synaptic variables as- H
sociated with their mutual coupling. We use %
here an Integrate-and-Fire (IF) model for de-

scribing the spiking activity of neurons, which

is characterized by the dynamics of the mem- R
brane potential V(#). An IF neuron consists of a
basic RC-circuit with the cell membrane capac-
itance C,, in parallel with a membrane resis-
tance R,. If the membrane potential is below a
given threshold V. (subthreshold dynamics),
then the membrane potential of each neuron in
the network is given by the following equation:

dVv(t)
Cm 7 = _gm(v(t) - VL) - Isyn(t)>

Figure 2.

(1)

where g, = 1/R,, is the membrane leak conductance, V] is the resting
potential, and I ,, is the synaptic current. The membrane time constant is
defined by 7., = C,/g,,.- When the voltage across the membrane reaches
the threshold V., the neuron generates a spike, which is then transmit-
ted to other neurons, and then the membrane potential is instanta-
neously reset to V... and maintained there for a refractory time 7.,
during which the neuron is unable to produce further spikes.

Incoming input currents coming from connected neurons or from
external inputs drive the membrane potential. Indeed, the spikes arriving
at a given neural synapse produce an input to the neuron, which induces
postsynaptic excitatory or inhibitory potentials essentially given by a
low-pass filtering formed through the synaptic receptors. In our case, the
total synaptic current is given by the sum of glutamatergic AMPA exter-
nal excitatory currents (Iyympaext)s AMPA (Inypa o) and NMDA
(InMDA rec) TeCUTTENE eXCitatory currents, and GABAergic recurrent in-
hibitory currents (I;p4):

Isyn = IAMPA,ex( + IAMPA,rec + INMDA,rec + IGABA) (2)
where
Next
IAMPA,ext(t) = gAMPA,exl(V(t) - VE)E SJAMPA’M(& (3)

=1
IAMPA,rec(t) = gAMPA,rec(V(t) - Vi)

Ne
X E WjSJ{\MPA,rcc(t), (4)
j=1

Samparec( V() — Vi)

INMDA,rcc(t) = 1+ ,ye*BV(f)

Ne
% EWjSJNMDA,rec(t)) (5)
j=1

Iapa(t) = gGABA(V(t) -V
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Excitatory

Inhibitory
pools

Global cortical network. The network contains at each node (brain area) excitatory pyramidal cells (red triangles) and
inhibitory interneurons (blue circles). Neurons are fully connected and clustered into excitatory and inhibitory populations (large
circles). Black and yellow arrows indicate excitatory and inhibitory recurrent connections between neurons in a local brain area
respectively, and red arrows indicate excitatory connections between neurons in different brain areas.

N;
X ijstABA(t). (6)

=1

Here gampa ext 8aMPA res SNMDA rec» A1 8 a4 are the synaptic conduc-
tances, and Vg, V| the excitatory and inhibitory reversal potentials, re-

spectively. The dimensionless parameters w; of the connections are the
synaptic weights. The NMDA currents are voltage dependent and they
are modulated by intracellular magnesium concentrations. The gating
variables S;:(t) are the fractions of open channels of neurons and are given

by:

d 5J_AMPA,exr( ) SJ._AMPA,ext( t)
= - + D, 8(t— 1), 7
dt TAMPA kE ( ) 7
ds]{\MPA,rcc( t) S]{\MPA,rec(t)
= — + 2,8t -1, 8
dt TAMPA ; ( ) ®
dSNMDA,rec(t) SJNMDA,rec(t)
= — + (H)(1 — NMDA,rect , 9
i Ty ax(t)(1 = ®), (9
deMDA,rcc(t) xNMDA,rcc(t)
! = -2 + >, 8(t— 1), (10)
dt TNMDA rise B
dsSMBA(p) SOABA(f)
: = -2 + D8t — 1. 11
dt TGABA 2’(: ( ) (1)

The sums over the index k represent all the spikes emitted by the presyn-
aptic neuron j (at times t]’-‘). In Equations 7-11, Tyyparise and
TNMDA decay € the rise and decay times for the NMDA synapses, and
Tampa and Tgapa the decay times for AMPA and GABA synapses. The
rise times of both AMPA and GABA synaptic currents are neglected
because they are short (<1 ms). The values of the constant parameters
and default values of the free parameters used in the simulations are
displayed in Table 1.

Each local attractor network contains 100 excitatory pyramidal neu-
rons and 100 inhibitory neurons. The total cortical network has, there-
fore, 66 X 200 = 13,200 neurons. We use local attractor networks where
neurons are organized into two sets of populations (Fig. 2), namely: an
inhibitory population, and an excitatory population. The network is fully
connected, meaning that each neuron in the network receives Ny, excit-



Deco and Jirsa ¢ Ongoing Cortical Activity at Rest

Table 1. Neural and synaptic parameters for each local brain area

Excitatory neurons Inhibitory neurons Synapses

Ne 100 neurons N, 100 neurons Ve omvV

G 0.5nF G 0.2 nf Vi —70mV
I 25nS I 20 nS TAMPA 2ms
V —70mV v —70 mV ThMDA ise 2ms
Vige —50mV Vigr —50 mV ThMDA,decay 100 ms
Vieset —=55mV Vieset —=55mV TeasA 10 ms
Tyt 2ms Tref 1ms o 0.5 kHz
Jampa ext 2496 nS Jampa ext 1.944 1S B 0.062
Jampa rec 0.104n5 Jampa rec 0.081n5 Y 0.28
Onmparec 032715 InmpArec 0.258 nS

Jeasa 4.375nS Jensn 3.4055 nS

atory and Nj inhibitory synaptic contacts. The connection strengths be-
tween and within the populations are determined by dimensionless
weights w;. The recurrent self-excitation within each excitatory popula-
tion is given by the weight w, and within each inhibitory population is
given by the weight w = 1. The connections between excitatory and
inhibitory neurons have the weight w = 1.

All neurons in the network always receive an external background
input from N, = 800 external neurons emitting uncorrelated Poisson
spike trains. More specifically, and for all neurons inside a given popu-
lation p, the resulting global spike train, which is still Poissonian, has a
time-varying rate 2, (1), governed by

avi, (1)
dt

Tn = - (Vgxr(t) - V(J) + o, \Rnp(t), (12)
where t, = 300 ms, v, = 2.4 kHz, o, is the SD of 1£_(¢), and nP(t) is
normalized Gaussian white noise. Negative values of 1£,,(t) that could
arise due to the noise term are rectified to zero. These input rate fluctu-
ations represent the noisy fluctuations that are typically observed in vivo.

Mean-field reduction. For the mesoscopic level of description, the
mean-field approximation reduces the number of integration variables
to one for each neural population (Brunel and Wang, 2001). Solving the
mean-field equations provides the fixed points of the population firing
rates, i.e., the stationary states of the populations after the period of
dynamical transients. As this can be done much more quickly than inte-
grating the full spiking model, scanning the parameter space to find a
parameter set matching the experimental findings becomes feasible.
Other mean-field approaches consider parameter dispersion (Assisi et
al., 2005; Stefanescu and Jirsa, 2008) and different types of coupling
including gap junctions and chemical synapses (Jirsa and Stefanescu,
2011; Stefanescu and Jirsa, 2011), which typically results in a higher-
dimensional state vector and hence is computationally more expensive.

In the mean-field formulation the potential of a neuron is calculated
according to:

dv(t)

T (13)

= = V() + g+ o (),
where V(#) is the membrane potential, x labels the populations, 7, is the
effective membrane time constant, u, is the mean value of the membrane
potential in absence of spiking and fluctuations, o, measures the magni-
tude of the fluctuations and 7 is a Gaussian process with absolute expo-
nentially decaying correlation function and time constant 7,,;ps. The
quantities w, and o are given by:

(TextVex: + TAMPA”?MPA + Pl”;lj MDA) Ve +
_ z"?MDA<V> + Tl”SABAV[ +V
M Sx b}

(14)
2 gf\MPA,exl(<V> - VE)ZchtVexszz\MPATx

7 G ’

where v, is the external incoming spiking rate, v; is the spiking rate of
the inhibitory population, 7,,= C,./g,, with the values for the excitatory

(15)
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or inhibitory neurons depending of the population considered. The
other quantities are given by:

_ AMPA NMDA GABA
Sy = 1+ TexVess T Tamparty + (o + p)n; + T, ™,

(16)
_ Co 17
Ty = gmsx) ( )
AMPA Ef] ]xMPA X (18)
j=1
NMDA Ef; NMDAl/J(Vj)’ (19)
(ABA Eﬁ GABA,, v, (20)
VTNMDA / 1 . aTNMDA rise) " Tu()
V) = 1+ )
(v) 1+ VTNMDA\ 1+ vTavoa E (n+1)!
(21)
TNMDA, rlse(l + VTNMDA)
T,(v -1 \
®) E( ) (k/ TNMDA, rlse(l + TNMDA) + kTwpa, decay
(22)
TNMDA = OTNMDA,rise TNMDA, decay (23)
T, = Srredae, (24)
&m
&ampA recVETAMPA
Tampa = (25)
gm

SampalNVe
=— 26
P1 P (26)
_ DgNMDANE(<Vx> - V(-1 27)

P gm]Z >
J =1+ vexp(— (V) (28)
T, = gGABANITGABA’ (29)
&m

<Vx> = My — (‘/lhr - Vreset) ViTyo (30)

where p is the number of excitatory populations, f, is the fraction of
neurons in the excitatory population x, w; , the weight of the connections
from population x to population j, v, is the spiking rate of the excitatory
population x, y = 0.28, B = 0.062, and the average membrane potential
(V) has a value between —55 mV and —50 mV.

The mean-field approximation finally yields a set of # nonlinear equa-
tions describing the average firing rates of the different populations in the
network as a function of the defined quantities u, and o

v, = d(uooy), x=1,...,n, (31)
where ¢ is the transduction function of population x, which gives the
output rate of a population x in terms of the inputs, which in turn depend
on the rates of all the populations.
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s 03) !
Oy o) =7 + TXJ' du \/g exp()[1 + erf(w)]| ,

Blus o)
(32)
Vibe = Mo T T
(i o) = " & )(1 +0.5 Af“) +1.03 ,E‘f“ —05 ",
(33)
(Vreset - MX)
B(MX’ O-X) = T’ (34)

with erf(u) the error function and 7,, the refractory period which is
considered to be 2 ms for excitatory neurons and 1 ms for inhibitory
neurons. To solve the equations defined by Equation 31 for all x, we
numerically integrate Equations 32—34 and the differential equation be-
low, whose fixed-point solutions correspond to solutions to Equation 31:

dv,

Tx 7. = — W + d)(l“'x) O-x)' (35)

dt

To find the possible fixed points that coexist for a given parameter set,
Equation 35 has to be integrated for different initial conditions of popu-
lation firing rates over a range of external inputs. Generally, the firing
rates obtained by the mean-field approximation would be exact if the
number of neurons was infinitely large and the unitary postsynaptic
potentials elicited by presynaptic spikes were infinitesimally small.

With the conductivity values specified in Table 1, the values of w,
studied ranged between 1.1 and 1.7, such that the local brain area net-
work, when isolated from the rest of the cortex, has a unique stable
attractor, namely the spontaneous state attractor, where all excitatory
neurons spike asynchronously at a rate of 3 Hz and the inhibitory neu-
rons at a rate of 9 Hz (Brunel and Wang, 2001). We also studied the effect
of different levels of noise from o, = 0.1-0.4. The results are robust and
not dependent of the values of w, and . In the Results section we show
the simulations by using always w, = 1.5 and o, = 0.14.

BOLD-fMRI signal. The simulation of the fMRI BOLD signal in the
global cortical model is computed by means of the Balloon-Windkessel
hemodynamic model of (Friston et al., 2003). The Ballon-Windkessel
model describes the coupling of perfusion to BOLD signal, with a dy-
namical model of the transduction of neural activity into perfusion
changes. The model assumes that the BOLD signal is a static nonlinear
function of the normalized total deoxyhemoglobin voxel content, nor-
malized venous volume, resting net oxygen extraction fraction by the
capillary bed, and resting blood volume fraction. The BOLD-signal esti-
mation for each brain area is computed by the level of neuronal activity
summed over all neurons in both populations (excitatory and inhibitory
populations) in that particular area. In all our simulations shown here
this level of neuronal activity is given by the rate of spiking activity in
windows of 1 ms. In brief, for the ith region, neuronal activity z; causes an
increase in a vasodilatory signal s; that is subject to autoregulatory feed-
back. Inflow f; responds in proportion to this signal with concomitant
changes in blood volume v; and deoxyhemoglobin content g,. The equa-
tions relating these biophysical variables are:

ds(t)
dr =z — ks — v{fi— s (36)
dfi(t)
dt = Si (37)
T,-d%ff) =fim v (38)

dgft)  f(1— (1 —p)" qv'
Tdr pi oy

) (39)
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where p is the resting oxygen extraction fraction. The BOLD signal is
taken to be a static nonlinear function of volume and deoxyhemoglo-
bin that comprises a volume-weighted sum of extra- and intravascu-
lar signals:

yi= V0(7pi(l —q)+ 2<1 - %) +(2pi = 0.2)(1 V,-)>,

(40)

where V; = 0.02 is the resting blood volume fraction. The biophysical
parameters were taken as in (Friston et al., 2003). We also tested simula-
tions in which the activity z; is given by the glutamate turnover (Logo-
thetis et al., 2001; Attwell et al., 2010) and obtained equivalent results,
since the synaptic activity typically strongly correlates with the spiking
activity in our network.

Entropy. To explore how the dynamics depend on W (scaling of the
global inter-areal coupling strength) the mean-field equations are solved
for particular values of W starting from different initial conditions. These
initial conditions are chosen at random for each node by initially setting
the average firing rate of the selective excitatory pool randomly to 10 Hz
(active) or 3 Hz (inactive) and the average firing rate of the inhibitory
pool to 9 Hz. To determine at which value for W a bifurcation has oc-
curred the number of attractors and the entropy of the system is derived
from the final average firing rates of the selective pools after 4000 steps
found for each initial condition. If the final average firing rate of each
selective pool is self-similar across initial conditions; i.e., the final average
firing rate of each selective pool after initial condition X does not differ
from any of the final average firing rates of this same pool by >10 Hz,
there is only a single attractor. If this is not the case, the number of
attractors can be established by counting the number of initial conditions
in which at least one selective pool has a different final average firing rate
from all previously found final average firing rates of that same pool. In
the case of only a single attractor the entropy is 0 as the system will
invariably settle within it. If, however, the number of attractors is larger
than 1, the entropy is given by

H= -, p(i)logp(i), (41)

where p(i) is the probability that the system settles in attractor i.

Results
We consider the dynamics of a realistic global attractor spiking
network structured in brain areas, which are interconnected ac-
cording the diffusion tensor imaging (DTI)/DSI-based neuro-
anatomical connectivity matrix of the brain of five human
subjects (Human Connectome; Hagmann et al., 2008; see Mate-
rials and Methods). Precisely, the interplay between the particu-
lar underlying structure of the neuroanatomical inter-areal
connections, thelocal attractor spiking dynamics of each area and
the noise is able to explain the generation of the spatiotemporal
structured resting state networks evidenced by the fMRI func-
tional connectivity gained from the same subjects. In the follow-
ing we will demonstrate that resting state networks in fMRI result
from structured noise fluctuations around the trivial low firing
equilibrium state induced at the edge of a bifurcation by the
presence of latent “ghost” multistable attractors corresponding
to distinct foci of high firing activity in particular brain areas.
We first study the stationary fix points (attractor landscape) of
the cortical spiking network described in the Materials and Meth-
ods. We reduce the spiking dynamics to a set of mean-field equa-
tions that describes the stationary states (see Materials and
Methods). In particular, we study the attractors of the global
cortical system as a function of the parameter W scaling the global
inter-areal coupling strength. Figure 3 plots the number of attrac-
tors found in the system as a function of W. We find these attrac-
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Figure4. Fitting of empirical data as measured by the correlation between simulated and empirical functional connectivity as
a function of the global coupling parameter IW. The best it is achieved at the edge of the bifurcation.

tors by iterating as usual the mean-field reduced rate equations  found in Figure 3.
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after departing from random initial con-
ditions (see Materials and Methods).

This entropy characterizes the effective
expected variability of cortical activity due
to nonstationary noise-driven transitions
between multistable attractors (which will
be studied later with the full spiking im-
plementation). For very small values of W
only one attractor is stable and therefore
the entropy is zero. That attractor corre-
sponds to the trivial spontaneous ground
state of the system where all neurons in all
brain areas are firing at a low level of ac-
tivity (excitatory neuron at 3 Hz and in-
hibitory neurons at 9 Hz). For very large
values of W also only one attractor is sta-
ble and therefore the entropy again turns
to zero. That attractor corresponds to the
“epileptiform” case where all excitatory
neurons are highly activated in all brain
areas. In intermediate regions of W mul-
tistability of many attractors correspond-
ing to distinct foci of high firing activity in
particular brain areas emerges, causing
consequently an increase of the entropy.
For our further analysis, the bifurcation
separating the trivial spontaneous state
and the multistability regionat W= W_=

1.6 will be particularly relevant.

To identify the mechanisms underly-
ing resting state generation, we study next
how the dynamics of the model depends
on the global coupling strength W. The
dynamics of the cortical model is simu-
lated by using the spiking model. We first
calculate the firing activity in all brain ar-
eas, and then simulate the BOLD-fMRI
signal by using the Balloon-Windkessel
model (Friston et al., 2003; see Materials
and Methods). Then the simulated BOLD
signal was downsampled at 2 s to have the
same resolution as in (Honey et al., 2009)
and the global signal (average over all
regions) (Fox et al., 2005, 2007) was re-
gressed out of the BOLD time series.
Finally, we computed the simulated func-
tional connectivity by calculating the cor-
relation matrix of the BOLD activity
between all brain areas. To identify the re-
gion of the parameter W where the model
best reproduces the empirical functional
connectivity, we computed the Pearson
correlation between both the empirical
and the simulated functional connectivity
matrix. Figure 4 shows how the fitting of
empirical data as measured by the corre-
lation between simulated and empirical
functional connectivity is maximal for
values of W at the edge of the bifurcation

Interhemispherical correlations are much

initialized with 1000 different initial conditions. Furthermore, =~ weaker and sometimes missed in the model, because the DTI/DSI
Figure 3 also shows the entropy of the attractors calculated by  tractography also missed those connections in the neuroanat-
considering the probability of obtaining the different attractors ~ omical matrix that we used (see Fig. 1a). Figure 4a plots the fitting
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Figure5. Detailed comparison between the neuroanatomical connectivity matrix, the empirical and the simulated functional connectivity for the working point W = W, = 1.6 at the edge of the

bifurcation. a, Left, Functional connectivity matrix based on the firing rates dynamics. Middle, Functional connectivity matrix based on the simulated BOLD signal. Right, Empirical functional
connectivity. b, From left to right: neuroanatomical connections, empirical and simulated functional connectivity for the seed IPC. ¢, Pearson correlation between empirical and simulated functional

connectivity for each individual seed (blue), and the corresponding p-value (red).

of the functional connectivity at rest between theory and empir-
ical data taking into account all pairs, i.e., including also the
interhemispherical, whereas Figure 4b plots the results for single
hemispheres, i.e., excluding interhemispherical pairs.

For the particular value W = W, Figure 5 shows a detailed
comparison between the simulated and empirical functional
connectivity. Figure 5a shows the simulated (left and middle sub-
panel) and empirical (right subpanel) functional connectivity
matrices. In particular, for the simulated model we present the
functional connectivity matrix based on the firing rate dynamics
(left subpanel) and on the simulated BOLD signal (middle sub-
panel). The highest empirical functional connectivity correla-
tions correspond mainly to pairs linked by the neuroanatomical
connectivity matrix (Honey et al., 2009). The best agreement
occurs when the simulated correlation is also high for these pairs.
Figure 5b presents the neuroanatomical connectivity matrix (left
subpanel), the empirical (middle subpanel) and the simulated
(right subpanel) functional connectivity between one seed region

and all other brain regions. We took the left posterior cingulated
(IPC) as a seed (red bars in the plots). The simulated functional
connectivity largely reproduces a lot of details of the empirical
functional connectivity between the Default Mode Network re-
gions (Greicius et al., 2003) along the medial axis. Figure 5c shows
that Pearson correlation between both functional connectivity
matrices for a given seed is significantly positive for all seeds.
For the same working point, at the edge of the bifurcation,
Figure 6 shows typical temporal evolution of the simulated BOLD
signal for three particular brain regions. We took two regions
(IPC and left superior frontal (ISF)) in the Default Mode Network
which are correlated and a third region in temporal (IST) brain
areas (Attentional Network) which is anticorrelated with the first
two regions. The model is able to capture the correlation of
BOLD activity between brain regions in the same network and
the anticorrelation between brain region in different resting state
networks as evidenced previously by Fox et al. (2005). Further
more, these patterns of spatiotemporal correlations defining the
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0.05 maximally consistent with a power law
distribution. To test the hypothesis that a
given dataset is consistent with the as-
sumption that they are drawn from a
power-law distribution, we follow the
ISF standard goodness-of-fit test, which gen-
erates a p-value that quantifies the plausi-
bility of the hypothesis. This test basically
compares the “distance” between the dis-
tribution of the given dataset and the hy-
pothesized power law distribution.
Concretely we use here the method of
Clauset et al. (2009) which first fit the
given dataset to the power-law and calcu-
late the Kolmogorov—Smirnov (KS) sta-
tistic for this fit. Next, we generate a large
number of power-law distributed syn-

BOLD (% change)

-0.03 - thetic datasets with parameters equal to

those of the distribution that best fit the

0041 given dataset. Each synthetic dataset is fit

individually to its own power-law model

0.5 1 ! | | L L | i and a KS statistic is obtained for each one
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relative to its own model. At last we count
what fraction of the time the resulting sta-
Figure6.  SimulatedBOLDsignal for3 brain regions (IPC, green; ISF, blueandIST, red). IPCand ISF are part o the Default Mode network, whereas ~ tistic is larger than the value for the given
ISTis partof the Attentional Network. Both in the empiricaland in the simulated data, the functional connectivity between IPCand ISFis positive, while  dataset. This fraction establishes the

Time (sec.)

negative with IST. The temporal evolution of the signal shows this pattem of correlations. p-value. If p is large, then the difference
between the given dataset and the as-

a b sumed underlying power law model can

1 be attributed to statistical fluctuations

08 ! alone; if it is small (<0.1), the power law

2 2 os model is not a plausible fit to the data.
73 § y Figure 7 plots the p-values of the Kolm-
& o ogorov—Smirnov test, the goodness of
0.2 ? fit (gof), and the estimated maximum-

0 - » . ,  likelihood estimate of the scaling expo-

w nent (alpha), as a function of the global
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Figure 7.  p-values of the Kolmogorov—Smirnov test, the gof, and the estimated maximum-likelihood estimate of the scaling empirical functional connectivity data
exponent (alpha), as a function of the global coupling parameter IW. a plots the results taking into account all pairs, i.e., including also gives a significant value and are very
also the interhemispherical, whereas b plots the results for single hemispheres, i.e., excluding interhemispherical pairs. The  similar to the ones obtained in the simu-
horizontal line in each subpanel corresponds to the value obtained for the empirical data. lations precisely at the brink of the
bifurcation.

concept of resting state networks emerge at the level of slow fluc- . .
tuations ~0.1 Hz. Discussion

At last, we show that at the edge of the bifurcation the tail of  In this paper, we investigated the neuronal and cortical mechanisms
the distribution of the pair correlations between brain areas is  underlying the generation of resting state networks in the brain in
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absence of any stimulation and task. We formulated and studied a
detailed and realistic spiking cortical network that is microscopically
organized as standard attractor models (known from neural models
of memory, attention, decision making, etc.) and mesoscopically
organized through a neuroanatomical large-scale connectivity
matrix obtained from human subjects via DTT/DSI tractography.
More specifically, the model of a local brain area consists of integrate-
and-fire spiking neurons with excitatory (AMPA and NMDA) and in-
hibitory (GABA-A) synaptic receptor types. We demonstrated that the
best fit of the empirical data as characterized by the fIMRI BOLD signal-
based functional connectivity is obtained when the brain network is
critical. In other words, the brain network operates at the brink of a
bifurcation that separates the stable equilibrium low activity state from
the multistable state region where many attractors corresponding to
high activity in different brain areas coexist. Under these conditions the
slowly fluctuating (<0.1 Hz) resting state networks emerge as structured
noise fluctuations around the stable low activity state induced by the
presence of latent “ghost” multistable attractors at the edge of the
bifurcation.

Conceptually the notion of a global attractor model of the brain
network is not new (Grossberg, 1980; Hopfield, 1984; Carpenter and
Grossberg, 2003; Haken, 2004). In these instances the equilibrium of
a network is typically multistable, in other words different equilib-
rium states coexist and one state is finally realized. Ghosh et al.
(2008) proposed originally that the RSN settles in one of these states
and then explores in the presence of noise the neighborhood of this
particular state. They have clearly demonstrated that the brain net-
work must operate close to instability of the equilibrium to allow for
such exploration. This phenomenon is called criticality. However,
Ghosh et al. (2008) have not established the coexistence of multiple
states, which will be eventually visited during the noise-driven explora-
tion. Furthermore, if the brain network dynamics is indeed critical, then
the multiple states may be stable, but they also may represent latent
“ghost” attractors, which are regions of the state space just at the edge of
the bifurcation. Answers to these questions will shed light not only on
the mechanisms giving rise to the emergence of RSNs, but also have
implications regarding our understanding of brain function.

In contrast to previous models (Honey et al., 2007; Ghosh et al.,
2008; Deco et al., 2009) the spiking attractor model used here does
not exhibit oscillations explicitly, but describes the firing rate of
pools of neurons. Modulations of the neuronal subthreshold activity
giving rise to rhythms as observed in local field potentials can be
studied in principle, but have not been considered here, since we
focused upon the emergent fix point attractors and their role in
shaping the brain network’s dynamic repertoire. This focus upon fix
point attractors does not imply a static nature of the resting state
network dynamics. On the contrary, the dynamics of the asynchro-
nously firing neurons within a brain area is complex, but the fix
point attractors prescribe its firing rate. The advantage of neglecting
the oscillatory physiological signals lies in the fact that we can neglect
the time delays via signal transmission between brain areas. This is
justified in this particular case, because time delays do not alter the
stationary attractor states of a network, however, they may alter the
stability boundaries of the oscillatory network states (for review, see
Jirsa, 2004; Jirsa and Ding, 2004; Jirsa, 2009). As a consequence, the
resulting dynamic repertoire will be mostly determined by the prop-
erties of the neuroanatomical connectivity matrix. Through this ap-
proach we demonstrated that a large number of resting state
networks, and therefore alarge number of genuine attractors beyond
the bifurcation threshold, is crucial for the size and richness of a
network’s dynamic repertoire.

It is intellectually tempting (and not too far-fetched, we believe)
to interpret the multistable attractor landscape beyond the bifurca-
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tion point as functionally meaningful. When choosing the working
point of the brain network at rest just below the bifurcation, then the
multistable attractors express themselves as latent ghost attractors,
i.e., the stable fixed points do not exist yet, but are either saddle
points with at least one unstable direction, or regimes in the state
space with slow flow. Criticality here means that the magnitude of
the flow is close to zero at these points. As a consequence, these states
can be easily stabilized when needed in a given task context or for a
given function. This is in contrast to existing approaches in cognitive
neurosciences, in which cognitive/behavioral states coexist and
(task-specific) stimuli drive the system from one state to the other, or
alternatively, state transitions are considered as mechanisms for
goal-directed behavior (Kelso, 1995; Calvert et al., 2004; Haken,
2004; Kelso and Jirsa, 2004; Rolls and Deco, 2010). Our here pro-
posed scenario is different: there exists a set of available brain states in
arepertoire that can be rapidly activated. Even in absence of any task,
the repertoire exists and expresses itself by shaping the dynamic flow
in the neighborhood of the equilibrium point of the network. This
subtle but crucial element establishes also the main difference of the
here presented work and the model of Ghosh et al. (2008) with other
RSN models. It is the fluctuations around the equilibrium point of
the network that are structured, rather than the network state. In
resting conditions, the system does not hop from a multistable state
to another multistable state like in former models (Deco et al., 2009)
but the fluctuations around the unique equilibrium (the low activity
ground state) become structured induced by the attractor structure
of the cortical model above the bifurcation point. The mechanism as
proposed by Ghosh et al. (2008) is identical to the here proposed
structured fluctuations, but it has never been established that the
attractor landscape of Ghosh et al. (2008) is indeed multistable. This
crucial multistability, however, we have demonstrated here explic-
itly. At the working point just below the critical threshold value, the
brain network is not particularly prone to be in any other state than
the equilibrium state, but with gentle external stimulation the system
could be rapidly stabilized in one of the attractor states. The stabili-
zation of a particular attractor will require well controlled, but minor
reconfigurations of the network parameters rather than creating an
attractor entirely from scratch. As we demonstrated here, the attrac-
tors are encoded in the connectivity matrix and are presumably as-
sociated with the computation of a specific brain function, which is
evidenced by the fact that the resting state networks resemble inter-
mittent activations of spatial network patterns that are consistently
known to be activated under cognitive and behavioral task condi-
tions (Fox et al., 2005). There have been several other studies, which
demonstrated that in the absence of an overt task, spontaneous fluc-
tuations in the BOLD signal correlate across functionally related
brain regions (Lowe etal., 1998; Gusnard and Raichle, 2001; Greicius
etal., 2003; Rogers et al., 2007). Some of these regions are also part of
the Default Mode Network (Greicius et al., 2003), which identifies
regions showing the greatest deactivation during externally imposed
cognitive challenges. Interestingly multistable attractors (more accu-
rately, bistable limit cycles) have been also postulated to be involved
in the generation of the alpha rhythm (Freyer et al., 2011), which isa
prominent mostly posterior rhythm of 8—12 Hz in the human. Al-
pha activity arises in absence of any stimulation or task context, in
particular with eyes closed. Under conditions of noise, the cortico-
thalamic model of Freyer et al. (2011) operates close to a subcritical
Hopf bifurcation and captures various detailed temporal character-
istics of alpha activity, including the bimodal distribution of the
power spectrum and scale-invariant fluctuations. In its spirit, this
modeling approach is closer to Deco et al. (2009) since it places the
ongoing cortical oscillations beyond the threshold onto self-
sustained oscillatory attractors (limit cycles). However, no spatio-
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temporal extension of this effort exists so far. Nevertheless, the
detailed elaboration of the temporal characteristics of the alpha spec-
trum and the authors’ conclusion that the brain operates close to
instability is intriguing. In other words, the brain at rest appears to be
critical.

We conclude that the multistable attractor landscape, as ex-
pressed by the latent ghost attractors during resting state conditions,
defines a functionally meaningful dynamic repertoire of the brain
network, that is inherently present in the neuroanatomical connec-
tivity. This repertoire is functionally relevant, since it allows the
system to rapidly compute a specific brain function through stabili-
zation of one of its attractors. Consequently, the more entropy of
attractors exists, the richer is the dynamical repertoire and therefore
the brain network displays more capabilities of computation. We
speculate therefore that the neuroanatomical connections devel-
oped a scale-free type of architecture to be able to store a large num-
ber of different and flexibly accessible brain functions. The
numerous brain functions are evidenced indirectly under resting
state conditions by the generation of a large diversity of networks
reflecting different ways of structured fluctuations, i.e., by the resting
state networks. These mechanisms will be studied in future works.
An advantage of spiking models is precisely that we can incorporate
effects like oscillations, neuromodulations, etc., in a simple way and
without destroying the structure of attractors.
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